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In this work, a sufficiently general approximate solution to 
transient heat conduction problems in 1-D cylindrical geometry, 
with heat generation and a time variable Dirichlet conditions 
was presented using the Green function method. An important 
integral involving Bessel functions that is part of the solution 
has been solved in detail here. The results obtained with the 
use of this solution when applied in some particular cases of 
practical interest, were in good agreement with the solutions 
reported by the literature. We have adopted a methodology that 
consists of addressing a non-homogeneous problem solution 
with non-homogeneous boundary conditions in a non-
homogeneous problem solution with homogeneous border 
conditions more two stationary solutions related to the given 
Dirichlet conditions. As a result, the solution obtained has no 
convergence problems at the boundaries of the cylindrical 
region with the temperature prescribed conditions. 
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 Neste trabalho, uma solução aproximada suficientemente 
geral para problemas de condução de calor transiente em 
geometria cilíndrica 1-D, com geração de calor e condições de 
Dirichlet variável no tempo foi apresentada usando o método 
de funções de Green. Uma importante integral envolvendo 
funções de Bessel, que faz parte da solução, foi aqui resolvida 
com detalhes. Os resultados obtidos com o uso dessa solução, 
quando aplicada em alguns casos particulares de interesse 
prático, ficaram em boa concordância com as soluções 
reportadas na literatura. Foi adotada uma metodologia que 
consiste em fatiar a solução do problema não homogêneo com 
condições de fronteira não homogêneas em uma solução do 
problema não homogêneo com condições de fronteira 
homogêneas mais duas soluções estacionárias relacionadas 
com as condições de Dirichlet dadas. Com isso, a solução 
obtida não tem problemas de convergência nas fronteiras da 
região cilíndrica com as condições prescritas de temperaturas. 
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1. Introduction 

The problem of transient heat conduction in a long and thin 1-D hollow cylinder of 

homogeneous and isotropic material, with heat generation ( , )g r t  per unit of time, per unit volume 

3

W

m

 
 
 

 and with variable Dirichlet conditions, which according to Hahn and Özisik (2012, p. 329) is 

given by 

 
2

2

1 ( , ) 1
, , 0

T T g r t T
a r b t

r r r k t

  
+ + =   

  
, (1) 

where ( , )T T r t=  is the temperature in the cylindrical region, k  is the thermal conductivity of the 

material, while   is the thermal diffusivity of the substance, that is,  it represents the thermal-

physical properties of the medium  (HAHN; ÖZISIK, 2012). Together with equation (1) there are 

imposed Dirichlet boundary conditions, ( )ST f t=  and a given initial condition which are represented 

by the equations: 

 
1

2

1: ( , ) ( ), 0,

2 : ( , ) ( ), 0,

CF T a t f t t

CF T b t f t t

= 


= 
 (2) 

 : ( ,0) ( ),CI T r F r a r b=   .
 

(3) 

Hollow cylinders have very practical importance, especially in engineering.  In mechanics, for 

example, hydraulic hollow piston cylinders are widely used. In electricity, these cylinders are made 

of ferrite discs, which is a material formed by iron oxide with magnetic properties, and are commonly 

used to avoid high temperature variations and heat peaks in electrical currents that pass through 

cables, like a laptop power cord (ROMER, 2013). These cylinders are also used as  cladding in 

cylindrical layers where heat is generated, for example, in nuclear and thermoelectric plants. 

According to Rodrigues and Mesquita (2017), uranium-zirconium hydride fuel elements of diameter 

37,7D mm=  encapsulated in aluminum type AL11OF  of thickness 0,76e mm=  are used in the 

Triga IPR-R1 research reactor, located at the UFMG Campus. 

These aluminum alloys are widely adopted as fuel cladding in uranium (U), plutonium (Pu) or 

thorium (Th) based fuel element reactors due to their high thermal conductivity, low thermal neutron 

capture section, good strength to corrosion, availability and low cost (PERROTTA, 1999). It is known 

that a one-dimensional analysis is generally not realistic for a 3-D problem, and even two-

dimensional movements of a fluid, depending dependent on time, do not actually exist (MEYER, 

2007). However, Fox, Pritchard and MacDonald (2015) state that in many engineering problems, 

even a 1-D analysis is adequate to provide approximate solutions within the desired precision. In 

this sense, infinite circular cylinders, that is, long, 
0

10
L

r
  , and thin, are suitable for a one-

dimensional analysis because they meet the requirement of radial symmetry, ( )0, 0rT t = . 
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In this way, many problems of practical importance can be approached by the mathematical 

formulation described by eqs (1-3). If boundary conditions are functions of time, the variable 

separation method must be discarded (FERNANDES, 2009). Although the Laplace transform has 

been widely used by Carslaw and Jaeger (2011) to obtain a general solution for homogeneous, 

transient heat conduction problems in 1-D hollow cylinders, it does not contemplate Dirichlet 

conditions more general than constant values. Furthermore, the initial temperature over the 

cylindrical region must be zero. 

Cinelli (1965) presented an article in which he used the finite Hankel transform method to 

solve heat conduction problems in this geometry, in order to study with more emphasis, the Cauchy 

boundary conditions ( )S ST h T T = − , on the faces of the region, which occurs, for example, in 

nuclear reactors. Cauchy conditions are easier to perform from a physical point of view, for example 

a ventilation system that moves a fluid such as coolant air from one point to another, whereas a 

Dirichlet condition can represent a change in phase of a substance that occurs on the surface, such 

as evaporation/cooking (HAHN; ÖZISIK, 2012). According to Hahn and Özisik (2012) the most 

powerful method to solve transient and non-homogeneous heat conduction problems is the 

approximation by Green functions. The great strength of the use of these functions lies in the 

possibility of obtaining solutions, of this type, to more varied and complex problems, including 

inhomogeneities that vary in time and space (FERNANDES, 2009). 

To obtain Green's function it is necessary to solve the associated homogeneous problem by 

separating variables. Once the Green's function is obtained for a specific problem, the analytical 

solution of temperature distribution is immediately available. This solution involves several terms and 

each of them has a physical meaning (HAHN; ÖZISIK, 2012). However, when temporal Dirichlet 

conditions such as those specified by eqs (2) and (3) are used, the solution obtained using Green's 

functions may not converge uniformly in the regions close to the boundary points as can be seen in 

example 8.8 of Hahn and Özisik (2012, p. 329). 

In order to remove or even mitigate this difficulty, Hahn and Özisik (2012) suggest slicing the 

original solution, then the non-homogeneous problem with non-homogeneous boundary conditions 

is transformed into a non-homogeneous problem, but now with homogeneous boundary conditions . 

Our objective is to use the Green function method to obtain a sufficiently general expression, which 

is an approximation of the solution to transient heat conduction problems, with heat generation and 

with non-homogeneous Dirichlet boundary conditions changing over time, and a given initial 

condition in the 1-D geometry on thin and long hollow cylinders, that is, heat problems that can be 

represented by eqs (1-4). An important integral involving Bessel functions that is part of the 

approximation of the established general solution can be solved, which produced simplifications in 

this equation when particular cases of it were analyzed. Some of these special cases reported in the 

existing literature were used for validation by comparing the general solution when applied to each 

case analyzed. 
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2. Materials and methods 

The homogeneous heat conduction equation in transient regime, and in a 1-D system in 

cylindrical coordinates is given by the equation (CARSLAW; JAEGER, 2011): 

 
2

2

1 1
.

T T T

r r r t

  
+ =

  
 (4) 

2.1. Sturm-Liouville problem in cylindrical coordinates 

An equation of the form 

 ( ) [ ( ) ( )] 0
d dy

p x q x w x y
dx dx


 

+ + = 
 

, (5) 

which satisfies certain boundary conditions on an interval bxa  , where ( ),p x  ( )q x  and ( )w x  

are continuous functions on that interval, with ( )p x  differentiable, is called the Sturm-Liouville 

equation. The search for non-trivial solutions for this equation with boundary conditions at the 

extremes of the interval is called the Sturm-Liouville problem (DAVIS, 1963, SOTOMAYOR, 1979). 

Such solutions are called eigenfunctions, while the corresponding  ´s are called eigenvalues. This 

problem in cylindrical coordinates is given as in eq. (5) replacing the variable x  with ,r  that is, 

 ( ) ( ) ( ) 0][ =++







yrwrq

dr

dy
rp

dr

d
 . (6) 

In particular, if ( )p r r= , ( )
v

q r
r

= − and ( )w r r= , and making Ry = , we have the 

ordinary differential equation in the variable r given by 

 0
1

2

2
2

2

2

=







−++ R

r

v

dr

dR

rdr

Rd
 , (7) 

where 0r and generally 0,1, 2...v =  

Equation (7) subject to the homogeneous boundary conditions given by 

 

,,0

,,0

21

21

brRB
dr

dR
B

arRA
dr

dR
A

==+

==+

 (8) 

where 1A , 2A , 1B , 2B  are non-zero constants, is a Sturm-Liouville problem in cylindrical (or 

spherical) coordinates. The eigenfunctions ( )nv rR , , under the condition of 0  (HAHN; ÖZISIK, 

2012) that satisfy equation (7) and the conditions given by equation (8) constitute an orthogonal set 

of functions in space 2 ([ , ])C a b  with respect to the inner product given by 

 , ( ) ( )

b

a

f g r f r g r dr=  , (9) 
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and the quadratic norm of each eigenfunction given by (ÖZISIK; HAHN, 2012) 

 ( )   2( , ) ( , )

b

n v n v n

a

N N R r r R r dr  = =  . (10) 

According to Davis (1963) every R-integrable function in space ( )2 [ , ]C a b
 
that satisfies the 

boundary conditions given by equation (8) can be expanded in a series that converges point to point 

in this interval, that is, 

 ( )
1

( ) , ,n v n

n

R r C R r 


=

=  (11) 

where 
( )
1

( ) ( , ) , 1,2,...

b

n v n

n a

C r R r R r dr n
N




= = . 

The equation (7) is called Bessel equation and its general solution is the equation given by 

(HAHN; ÖZISIK, 2012) 

 ( ) ( ) ( )rYcrJcrR vv  21 += , (12) 

where ( )rJ v   and ( )rYv   are respectively Bessel functions of the first and second kind of order v . 

2.2. Variables Separation Method 

A standard method to obtain a solution of eq. (4) is to assume that variables are separable 

 ( ) ( ) ( ),T r t G r H t= , (13) 

where G  and H  are just functions of r  and t , respectively. Substituting equation (13) into equation 

(4) results in two ordinary differential equations (ODEs) independent in form (HAHN; ÖZISIK, 2012) 

 

2
2

2

1 1d G d G d H

dr r dr H dt



+ = = − , (14) 

that is, 

 
21 d H

H dt



= − , (15) 

 
2

2

2

1
0

d G dG
G

dr r dr
+ + = .

 

(16) 

The equation (15) can be solved directly by separating variables to obtain, 

 ( )
2

1

tH t c e  −= , (17) 

while the ODE in variable r  is a Bessel equation of order 0=v , whose general solution is given by 

equation (12) in the form 

 ( ) ( ) ( )2 0 3 0G r C J r C Y r = + , (18) 
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where the constants can be eliminated through suitable initial conditions. Therefore, a general 

solution of equation (4) is given by the product of the individual solutions given by equations (17) 

and (18), that is, 

 ( ) ( ) ( )
2

1 2 0 3 0, tT r t C e C J r C Y r  −= +   , (19) 

or omitting the constants, 

 ( ) ( )
2

0, ,tT r t e G r  −= . (20) 

As for each 0n , we can associate an eigenfunction ( ),v nG r 
 
and since equation (4) is 

linear, the most general solution will be obtained by the sum of all products of equations (17) and 

(18) 

 ( ) ( )
2

0

1

, ,n t

n n

n

T r t C e G r
  


−

=

= , (21) 

where the coefficients nC
 
are obtained from equation (11) when the initial condition ( ) ( ), 0T r F r=

 

is known. 

3. Results and discussions 

The homogeneous version of the problem given by equations (1-4) is in the form 

 0,,
11

2

2





=




+




tbra

trrr






, (22) 

 ( )1: , 0, 0CF a t t =  ,
 

(23) 

 ( )2 : , 0, 0CF b t t =  ,
 

(24) 

 ( ) ( ): , 0 , .CI r F r a r b =  
 

(25) 

Using the variable separation method described in section 2.2, equations (13) and (18) and 

the 2CF , condition given by equation (24), 

 
( )

( )
0

3 2

0

,
J b

C C
Y b




= −  (26) 

where ( ) 00 bY  , otherwise we would only have the trivial solution. From equations (18) and (26) 

results 

  4 0 0 0 0 4 0( ) ( ) ( ) ( ) ( ) ( )G r C J r Y b J b Y r C G r    = − = , (27) 

with 
( )

2
4

0

C
C

Y b
= . From equations (13) and (27) and from the 1CF  condition given by equation (23) 

we have the transcendental equation 

 ( ) 00 =aG  , (28) 
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where 

 ( ) ( ) ( ) ( ) ( )0 0 0 0 0G r J r Y b J b Y r    = −    (29) 

is an eigenfunction associated with the eigenvalue   defined in the interval bra  . 

The roots , 1, 2,...n n =
 
are all real and simple, where for each root   there is a 

corresponding root −  (CARSLAW; JAEGER, 2011). From equations (13), (17) and (27) we have 

 ( )
2

0

1

( , ) , , 0,n t

n n

n

r t C G r e a r b t
 


−

=

=     (30) 

so that the coefficients are obtained as in equation (11) by substituting ( )rR  for ( )rF , i.e., 

 
( )

( )0

1
( )

b

n n

n a

C r G r F r dr
N




=  , (31) 

being the inverse of the given norm using equation (10), 

 ( )
( )2

0

1 1
b

n

n

a

N
r G r dr




=



. 
(32) 

Had we used condition 1CF , given by equation (23) in equation (26), instead of 2CF , we 

could use case 4 from Table 2.3 of Hahn and Özisik (2012, p. 54) to obtain 
( )nN 

1

 

directly. From 

equations (30) and (31) we have 

( )
( )

( )
( ) ( )

( )

( )
( ) ( )

2 20 0

0 0

1 1

 , ´ ´ ´ ´ ´ ´ ´ ´n n

b b

t tn n

n n

n nn na a

G r G r
r t e G r F r r dr e G r F r r dr

N N

  
  

 

 
− −

= =

= =   . (33) 

According to equation (8-14) of Hahn and Özisik (2012, p. 306) the solution of the 

homogeneous problem given by equations (22-25) in terms of Green's functions can be put in the 

form 

 ( ) 0, ( , , ,́ ) ( )́ ´ ´

b

a

r t G r t r F r r dr  ==  . (34) 

Therefore, by comparing equations (33) and (34) we can obtain the Green’s function 

developed in 0=  for this problem in the form 

 
( )

( ) ( )
2

0 0 0

1

1
( , , ,́ ) ´n t

n n

n n

G r t r G r e G r
N



  



−

=

=

= , (35) 

or, in general, 

 
( )

( ) ( ) ( )
2

0 0

1

1
( , , ,́ ) ´n t

n n

n n

G r t r G r e G r
N

 
  




− −

=

= , (36) 

which is the Green’s function for the non-homogeneous version given by equations (22-25). 
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Instead of using tables to obtain 
( )nN 

1
, Carslaw and Jaeger (2011) succinctly proved that 

 ( ) ( )
2

2 0
0 2

1

2

b
b

a a

dG
N rG r dr r

dr
 



 
= =  

 
 . (37) 

The equation (37) corresponds to the original equation (5) of those authors, in which we 

replaced ( )0U r  by ( )rG 0 . According to equations (7) and (8) by Carslaw and Jaeger (2011, p. 

206), there is 

 
( )



 20 −=








=ar
dr

rdG
r    e   

( )


 20 −=








=brdr

rrdG
, (38) 

where 

 
( )
( )bJ

aJ






0

0= . (39) 

From equations (37-39) we have 

 ( )
( ) ( )

( )

2 2

0 0

2 2 2

0

2n

J a J b
N

J a

 


  

−
= . (40) 

From equations (36) and (40) we can express Green’s function as 

 
( )

( ) ( )
( ) ( ) ( )

2
2 22

0

0 02 2
1 0 0

( , , ,́ ) ´
2

n tn n

n n

n n n

J a
G r t r e G r G r

J a J b

  
  

 


− −

=

=
−

 . (41) 

In particular, when the initial condition is constant, the integral that appears on the right side 

of equation (33) can be simplified. Carslaw and Jaeger (2011) presented the following proposition 

 
( ) ( )0 0 0

0 2 2

0

2 ( ) ( )1
( )

( )

b
b

a à

dG r J a J b
rG r dr r

dr J a

  


   

− 
= − = 

 
 . (42) 

Here the negative sign in the middle term of this equation should be positive, because as the 

right side of equation (42) is, it has the opposite sign. In order to resolve this mistake, we will prove 

that 

 ( )
( ) ( )0 0 0

0 2 2

0

2 ( ) ( )1

2 ( )

b
b

a a

r dG r J a J b
rG r dr

dr J a

  


   

  − 
= + =  

   
 . (43) 

From equation (29), 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0 0 0

0 1 0 1

1 1
                    ,

b b b

a a a

b b

a a

rG r dr Y b rJ r dr J b rY r dr

Y b rJ r J b rY r

    

   
 

= −

   
= −      

   

  
 (44) 
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where expressions in parentheses are taken from equation (22) of Hahn and Özisik (2012, p. 694). 

The equation (44) can then be placed in the form 

 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

0 0

0 0 0

0 0

0 0                      .

b

a

dJ b dY bb
rG r dr Y b J b

dr dr

dY a dJ aa
J b Y b

dr dr

 
  



 
 



     
= − +    

     

     
+ −    

     


 (45) 

Using the equation (38) with the signals corrected to positive, we have from equations (29) 

and (45) that 

( )
( ) ( ) ( )

( )
0 0 0 0

0 2

0

2 ( ) ( )1 1
.

b

a r b r a

dG r dG r J a J bb a
rG r dr r r

b dr a dr J a

   


     
= =

−      
= − + =      

      
  (46) 

The solution of the heat conduction problem given by equations (1-4) in terms of the Green’s 

function given by equation (41) can be obtained using the equation (8-14) of Hahn and Özisik (2012, 

p. 306) in the form 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

´ 0

1 2

´ ´´

, , , ,́ ´ ´ ´ , , ,́ ,́ ´ ´

           ´ , , ,́ ´ , , ,́
´ ´

b t b

r a a

b b

r a r br a a

T r t G r t r F r r dr G r t r g r r dr d
k

G G
r r t r f d r r t r f d

r r




   

       

=

=

= ==

= + +

    
+ −       

  

 

. 

(47) 

The problem with this general solution is that the last two integral terms that carry  prescribed 

temperature information at the boundaries may not converge uniformly on ar =  or on br = , for the 

values of 1( )f t
 
or 2 ( )f t , that is, non-homogeneous boundary conditions can lead to difficulties in 

the convergence of the solution close to them (ÖZISIK, 1993). An example of this difficulty in 

converging the solution can be seen in problem 8.8 whose solution is given by equation (8-138) of 

Hahn and Özisik (2012, p. 331). According to these authors, one of the alternatives to alleviate this 

difficulty is to slice the original problem using the methodology proposed by Özisik (1993) that will 

be adopted here, and briefly described. Such methodology transforms in some cases, in particular 

the one we are analyzing, heat conduction problems in transient regime with non-homogeneous 

boundary conditions, into non-homogeneous problems, but with homogeneous boundary conditions. 

It is clear that if the non-homogeneous boundary conditions are transformed into homogeneous by 

this technique, the solution given by equation (47) should no longer have the contributions of the 

integral terms as functions of )(1 f  and )(2 f . 

It will be assumed that the solution of the problem given by equations (1-4) can be separated 

by the contribution of three components in the form 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2, , ,T r t r t r f t r f t  = + +  (48) 
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where 1( )r  and 2 ( )r  satisfy the following Cauchy problems given by ordinary differential 

equations in the form 

 

( ) ( )

( ) ( )

2

1 1

2

1 1

0, ,

1,     0

d r d r
r a r b

dr dr

a b

 

 

+ =  

= =

 (49) 

and 

 

( ) ( )

( ) ( )

2

2 2

2

2 2

0, ,

0,    1.

d r d r
r a r b

dr dr

a b

 

 

+ =  

= =

 (50) 

Making 
( )

, 1,2
i

i

d r
r B i

dr


= = , we have ( ) ( )ln , 1, 2.i i ir A B r i = + =  Hence, and using 

the boundary conditions given by equations (49) and (50), it results that 

 ( ) ( )1 2

ln ln

e

ln ln

r r

b a
r r

a b

b a

 

   
   
   = =
   
   
   

. (51) 

The functions ( )i r  are the stationary solutions to the problems of heat conduction in a 1-D 

hollow cylinder without heat generation given by equations (49-50). From equations (1-4), (48) and 

(51) results the problem ( )tr, =  given by 

 ( )

( )

( ) ( )

2

2

1 1
* , , 0

1: , 0, 0,

2 : , 0, 0,

. : , 0 * , ,

g a r b t
r r k t

CF a t t

CF b t t

C I r F r a r b

 








 
+ + =   

 

= 

= 

=  

 (52) 

where 

 1 1 2 2

( , ) 1
*( , ) ( ) ( ) ( ) ( )

g r t d d
g r t r f t r f t

k dt dt
 



 
= − + 

 
 (53) 

and 

  1 1 2 2*( ) ( ) ( ) (0) ( ) (0)F r F r r f r f = − + . (54) 

The equations (53) and (54) correspond to equations (1.50a) and (1.50b) of Özisik (1993, p. 

23). This method can be extended to multidimensional problems, since the boundary conditions are 

only a function of time. 

Green’s function given by equation (41) can be used to solve the problem given by equation 

(52) in the form 
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 ( ) ( ) ( ) ( )
0

0

, , , ,́ * ´ ´ ´ , , ,́ *( ,́ ) ´ ´

b t b

a a

r t G r t r F r r dr G r t r g r r dr d


     
=

 
= +  

 
   . (55) 

From equations (48) and (55) results the approximate solution by Green's functions for the 

problem given by equations (1-4) as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

1 1 2 2

, , , ,́ * ´ ´ ´ , , ,́ *( ,́ ) ´ ´

              ,

b t b

a a

T r t G r t r F r r dr G r t r g r r dr d

r f t r f t


    

 

=

 
= + + 

 

+ +

  
 (56) 

where ( )´,,, rtrG  is given as in equation (41) and ( )i r , 1, 2i =  are given as in equation (51). Note 

that now the solution obtained by equation (56) converges to the values prescribed at the boundary 

by equations (2) and (3), that is, 

 ( ) ( )1,T a t f t=  and ( ) ( )2, , 0T b t f t t=  . (57) 

To see this, simply use equations (28) and (51) in ar =  and equations (29) and (51) in br = . 

Note that the first term on the right side of equation (55) is the contribution of the initial condition 

( )rF *  from ( )tr,  to ( )trT , , that is, Green's function is evolved in 0= , multiplied by ( )rF *  and 

then integrated in the bra   domain. The second term brings the contribution of the generation 

term )´,(* rg  from ( )tr,  to ( )trT , , that is, it is the Green's function multiplied by por )´,(* rg  

and then integrated in this space. The third term brings the contributions of the Dirichlet boundary 

conditions. From equations (41), (51) and (54), the equation (56) can then be rewritten as follows 

( )
( )

( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( )

( )

2

2 2

22
0

0 02 2
1 0 0

22
0

0 02 2
1 0 0 0

1

, * ´ ´ ´ ´
2

         ´ *( ,́ ) ´ ´
2

ln ln

         

ln ln

n

n n

b

tn n

n n

n n n a

t b

tn n

n n

n n n a

J a
T r t e G r F r r G r dr

J a J b

J a
e G r e G r g r r dr d

J a J b

r r

b a
f t

a b

b a



  

 
 

 

 
   

 


−

=


− −

=

= +
−

+ +
−

   
   
   + +
 
 
 

 

  

( )2 ,f t
 
 
 

 

(58) 

where the equations (53) and (54) are again presented in the following form 

 

( )
( )

( ) ( ) ( ) ( )1 1 2 2

, 1
* , ,

g r t d d
g r t r f t r f t

k dt dt
 



 
= − + 

 

 1 1 2 2  *( ) ( ) ( ) (0) ( ) (0) , F r F r r f r f = − +  

(59) 

while the n  are given by equation (29) as 

 ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0.G r J r Y b J b Y r    = − =     

Some special cases of equation (58) will be analyzed using this general equation for an 

approximation of the solution of problems given by equations (1) to (4). 
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The Figure 1 shows a long and thin hollow cylinder of homogeneous and isotropic aluminum 

braL : , with Dirichlet conditions dependent only on time and heat generation. 

Figure 1 ‒ Long, thin hollow aluminum cylinder with time-dependent Dirichlet conditions on each 
surface of the solid with heat generation. 

   
Source: Authors' elaboration (2020). 

 

Let’s roughly consider the following parameters for aluminum: ( )190 / ok W m K= , 

0.045 ,a mm=  0.075b mm= , and being ( )
s

m261080 −= . The temperature and time units in 

International System of Units (SI) were converted to degrees and minutes, respectively. 

3.1. Case I.A 

Let's consider the cylinder in Figure 1, subject to the following Dirichlet conditions, without 

heat generation and constant initial condition, i.e., 

 

( ) ( )

( )

( )

, , 0,

, 0,

.

T a t T b t

g r t

F r V

= =



=

 (60) 

From equations (59) and (60) we have, 

 ( ) ( ) .0*and* == gVrFrF  (61) 

From equations (58), (60) and (61) results the solution of this problem in the form 

 ( )
( )

( ) ( )
( ) ( )

2
22

0

0 02 2
1 0 0 ´

, ´ ´ ´
2

n

b

tn n

n n

n n n r a

J aV
T r t e G r r G r dr

J a J b

 
 

 


−

= =

=
−

  . (62) 

From equations (46) and (62) we have 

 ( )
( )

( ) ( )
( )



=

−

−
=

1

02

0

2

0

0
2

,
n

n

nn

nt
rG

bJaJ

aJ
eVtrT n 




 

. (63) 

Equation (63) is in accordance with equation (13) obtained by Carslaw and Jaeger (2011, p. 

207) for this case. 

3.2. Case I.B 
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The cylinder in Figure 1 is under the same conditions as Case I.A, but now with uniform heat 

generation, that is, 

 

( ) ( )

( )

( )

0

, , 0,

, ,

,

T r a t T r b t

g r t g

F r V

= = = =



=

 (64) 

where 0g  is now taken as constant. From the equations (59, 64) we have 

 ( ) ( ) .*and* 0

k

g
gVrFrF ==  (65) 

From equations (58), (64) and (65) results the solution of this problem in the form 

( )
( )

( ) ( )
( )

( )

( ) ( )
( ) ( )

2

2 2

0

02 2
1 0 0

22
0

0 0 02 2
1 0 0 0 ´

,

          + ´ ´ ´ .
2

n

n n

t n

n

n n n

t b

t n n

n n

n n n r a

J a
T r t V e G r

J a J b

J a
g e G r e G r r dr d

k J a J b



  




 

 

  
  

 


−

=


− −

= = =

= +
−

−



  

 (66) 

From equations (46) and (66) we obtain the approximate solution of this problem in the form 

( )
( )

( ) ( )
( )

( )

( ) ( )
( )

( )

( ) ( )
( )

2

2

0

02 2
1 0 0

0 00
0 02 2

1 0 0 0 0

,

       

n

n

t n

n

n n n

tn n

n n

n n n n n n n

J a
T r t V e G r

J a J b

J a J ag
G r G r e

k J a J b J a J b






 

 

 
 

     


−

=


−

=

= +
−

  
+ − 

   + +     





 (67) 

Note that equation (67) “carries” the solution given by equation (63) which contained only the 

contribution of the initial condition. When →t , ( ) ( )rTtrT SS→, , that is, the temperature tends to 

the steady state ( )rTSS . The stationary equation in a 1-D hollow cylinder with heat generation can 

be obtained from equation (15) of Carslaw and Jaeger (2011, p. 191) in the form 

( )
k

rg
rBArTSS

4
ln

2

0−+= . Then, and using the boundary conditions of this problem, we can identify 

the sum of the first term between keys of equation (67) with the stationary solution, that is, 

 

( ) ( )

( ) ( )

( )
( )

( )
( ) ( )

2 2 2
0 00 0 0

2
1 0 0

2 2 2

0 0

ln
4 4

ln

                                                  ln .
4 4

ln

n n

n n n n

SS

a bJ a G rg g g a
a

ak k kJ a J b

b

a bg g r
r T r

a k k

b

 

  



=

−
 − + +

   +   
 

−
+ − =

 
 
 



 (68) 

Introducing equation (68) into equation (67) we obtain the solution to this problem given by 
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( )
( )

( ) ( )
( )

( )

( ) ( )
( )

( )
( )

( )
( )

2 20 00
0 02

1 10 0 0 0

2 2 2 22 2

0 0 0 0

,

            ln ln .
4 4 4 4

ln ln

n nt tn n

n n

n nn n n n n

J a J ag
T r t V e G r e G r

J a J b k J a J b

a b a bg g a g g r
a r

a ak k k k

b b

  
  

    

 
− −

= =

= − +
+  + 

− −
− + + −

   
   
   

 

 
(69) 

In particular, if 0=V , the equation (69) would be in the form 

 

( )
( )

( ) ( )
( )

( )
( )

( )
( )

2

2 2

00 0
02

1 0 0

2 22 2

0 0 0

, ln
4

ln

          ln .
4 4 4

ln

n t n

n

n n n n

a bJ ag g
T r t e G r a

ak kJ a J b

b

a bg a g g r
r

ak k k

b

 


  


−

=

−
= − − +

   +   
 

−
+ + −

 
 
 



 (70) 

The Figure 2 shows a simulation with cases I.A and I.B, using equations (63) and (70), 

respectively. 

Figure 2 – Temperature profiles in cylinder 1-D: (a) without heat generation and (b) with heat 
generation. 

        
Source: Authors’ elaboration (2020). 

 

In the case I.A, the more accentuated temperature decay to zero can be noticed near the 

region in ar =  that is under the effect of the null temperature condition on that surface. In case I.B, 

only the effect of the heat generation term on the temperature profile is noted. Note that graphs were 

generated close to the boundary in ar =  and with small times. 

3.3. Case II.A 

The cylinder in Figure 1 is subject to the following constant and not necessarily null Dirichlet 

conditions, without heat generation, and initial condition as a function of the spatial variable, that is, 
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( ) ( )

( )

( ) ( )

1 2, , , ,

, 0,

, 0 .

T a t V T b t V

g r t

T r F r

= =



=

 (71) 

From equations (59) and (71) we have 

 ( ) ( )















+

−=

a

b
a

r
V

r

b
V

rFrF

ln

lnln

*
21

 (72) 

and 

 0),(* trg . (73) 

Here, the stationary solution to this heat conduction problem is given by 

 ( )

a

b
a

r
V

r

b
V

rTSS

ln

lnln 21 +

= . (74) 

From equations (58), (72) and (73) we have 

( )
( )

( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( )

2

2

22 1 2
02

0 02 2
1 0 0

22 1 2
02

0 02 2
1 0 0

ln ln

, ´ ´ ´ ´
2

ln

ln ln

             ´ ´ .́
2

ln

n

n

b

tn

n n n

n n n a

b

tn

n n n

n n n a

b r
V VJ a r aT r t e G r G r F r r dr

bJ a J b

a

b r
V VJ a r ae G r G r r dr

bJ a J b

a






  

 


  

 


−

=


−

=

+

= + +
−

 
+ 

−  
−  

 

 

 

 (75) 

Using the integral reported by Carslaw and Jaeger (2011, p. 207) one can obtain 

 ( )
( ) ( )( )

( )

1 2
1 0 2 0

0 2

0

ln ln 2
´ ´ ´

ln

b
n n

n

n na

b r
V V V J b V J ar aG r r dr

b J a

a

 


 

 
+ − + 

= 
 
 

 . (76) 

From equations (75) and (76) results the expression given by 

 

( )
( )

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

2

2

22
02

0 02 2
1 0 0

1 2
1 0 2 0

0 02 2
1 0 0

, ´ ´ ´ ´
2

ln ln

           .
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n

n

b

tn

n n n

n n n a

n n t

n n

n n n

J a
T r t e G r G r F r r dr

J a J b

b r
V VV J b V J a r aJ a e G r

bJ a J b

a






  

 

 
  

 


−

=


−

=

= +
−

+− +  − +
−

 



 (77) 

The equation (77) agrees with equation (15) of Carslaw and Jaeger (2011, p. 207) for this 

case, where the authors used the method of separating variables through a translation of the 

stationary solution. In particular if in equation (71), ( )1 2 0andV V F r V= = , using equation (46), 

equation (77) can be put in the form 
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( )
( )

( ) ( )
( )

( )

( ) ( )
( )

2 20 0

0 0 1 0 1

1 10 0 0 0

, .n nt tn n

n n

n nn n n n

J a J a
T r t V G r e V G r e V

J a J b J a J b

  
   

   

 
− −

= =

= − +
+ +

   (78) 

This equation can be easily adapted for application in substance diffusion (CRANK, 2011) 

replacing   by D  and iV  by the substance concentration iC . 

3.4. Case II.B 

The cylinder in Figure 1 is subject to the following constant and not necessarily null Dirichlet 

conditions, with uniform heat generation, 0g , and initial condition as a function of the spatial variable, 

i.e., 

 

( ) ( )

( )

( ) ( )

1 2

0

, , , ,

, ,

, 0 .

T a t V T b t V

g r t g

T r F r

= =



=

 (79) 

From equations (59) and (79) we have 

 ( )
k

g
trg 0,* = . (80) 

Introducing the second term, that appears on the right side of equation (58), in equation (77), 

we get 
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1 0
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r dr d


=

  

 (81) 

The double integral that appears in equation (81) can be solved separately into the variable 

  and then into the spatial variable r , using equation (46) to obtain 
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 (82) 



Holow 1-D cylinders with heat generation                                                     17 

 

 

REMAT, Bento Gonçalves, RS, Brasil, v. 7, n. 1, p. e3015, June 30, 2021. 

When →t , ( ) ( )rTtrT SS→, , that is, from equations (68) and (82) the temperature tends 

to 
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 (83) 

Equation (83) can still be placed as 
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. 
(84) 

It's easy to verify that ( ) 1SST a V=  and ( ) 2SST b V= . From equations (82) and (84) we have 
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. 
(85) 

Equations (82) and (85) can be used to approximate the solution of the problem given by 

case II.B.  Figure 3 shows a simulation with cases II. A and II. B, using equation (77) and equation 

(85), respectively. 

Figure 3 ‒ Temperature profiles in the cylinder 1-D: (a) without heat generation and (b) with heat 
generation.       

 

Source: Authors’ elaboration (2020). 
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It can be noted that the uniform heat source did not produce a significant temperature rise in 

the cylinder, showing that the constant temperature Dirichlet conditions appear to limit the 

temperature rise produced by the uniform heat source. 

Figure 4 shows a simulation of this problem, but now considering a variable source term. To 

generate this graph, equation (81) was used, since the integration in time does not provide a closed 

formula as occurred with the uniform heat source in the previous case given by equation (84). 

Figure 4 ‒ Temperature profiles in the 1-D cylinder with time-varying uniform heat generation. 

  
Source: Authors' elaboration (2020). 

 

These temperature profiles show a rapid temperature rise for aluminum smelting that occurs 

around C0660 . A greater temperature variation can be noted in the 0.06r m=  position in relation 

to the region closest to the inner surface at 0.06 ,r m=  in relation to the region closest to the inner 

surface at ar = . This may be due to the greater influence of the Dirichlet condition on the outer 

surface in br =  which has a higher prescribed temperature. 

The last case considers a time-varying Dirichlet condition on the surface in br = . 

3.5. Case III 

The cylinder in Figure 1 is subject to the following Dirichlet conditions, one being constant 

and the other variable, with uniform heat generation, 0g , and initial condition of constant value as a 

function of the spatial variable r , that is, 

 

( ) ( )

( )

( )

1

0

0

, , , ,

, ,

, 0 ,

T a t V T b t t

g r t g

T r V

= =



=

. (86) 

where   is a positive constant. From equations (59) and (86) we have 
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. (87) 

From equations (58) and (87) results the expression of the approximate solution of this 

problem given by 
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. (88) 

The Figure 5 shows temperature profiles for case III.A when 00 g , compared to case III.B 

with 0g
 
constant. The graphs were generated with equation (88). Figure 5(a) shows the temperature 

distribution for cases III.A and III.B in two cylinder positions, while Figure 5(b) shows some 

temperature profiles along the spatial domain with fixed time. In this figure it can be noticed that on 

the surfaces of the hollow cylinder, the temperatures converge to the same value as the Dirichlet 

conditions, with or without heat. This fact was expected and shows the quality of the solution obtained 

for this problem with equation (88). 

Figure 5 ‒ Temperature profiles in the 1-D cylinder (a) without heat generation and (b) with heat 
generation.     

  

Source: Authors’ elaboration (2020). 
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4. Conclusions 

An approximately general solution for the transient 1-D heat conduction problem, with heat 

generation in homogeneous and isotropic hollow cylinders, with Dirichlet condition as a function of 

time on the surfaces, and a given initial condition was established here. To alleviate or mitigate 

possible difficulties in the convergence of the solution near the surfaces that constitute the 

temperature distribution region, a known method was adopted which consists of transforming the 

non-homogeneous boundary conditions into homogeneous ones, which combined with the obtained 

Green's function from the approximate solution of the homogeneous version of the analyzed problem, 

it became possible to obtain an approximately general solution for this type of problem. Simulations 

were performed with this equation, some of them involving special cases reported in the literature, 

which allowed the comparison of the obtained results, observing a good agreement between them. 

Thus, this solution allows the analysis of more general thermal problems that may have applications 

in engineering. Furthermore, this solution can be used to validate approximate numerical solutions, 

increasing their accuracy. An important integral formed by Bessel functions integrating the general 

expression was solved analytically, and its result used in the general solution to obtain simplified 

expressions of the special cases analyzed here. 
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