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RS, v. 7, n. 2, p. e3001, 1 Jul.
2021. DOI: https://doi.org/10.
35819/remat2021v7i2id4330

Submission: July 21, 2020.
Accept: December 10, 2020.

Keywords
Gaussian Integral
Special Functions
Fractional Derivative

Abstract
In this paper, we present a solution for a specific Gaussian integral. Intro-
ducing a parameter that depends on a n index, we found out a general so-
lution inspired by the Taylor series of a simple function. We demonstrated
that this parameter represents the expansion coefficients of this function, a
very interesting and new result. We also introduced some Theorems that
are proved by mathematical induction. As a test for the solution presented
here, we investigated a non-extensive version for the particle number den-
sity in Tsallis framework, which enabled us to evaluate the functionality of
the method. Besides, solutions for a certain class of the gamma and facto-
rial functions are derived. Moreover, we presented a simple application in
fractional calculus. In conclusion, we believe in the relevance of this work
because it presents a solution for the Gaussian integral from an unprece-
dented perspective.

Palavras-chave
Integral Gaussiana
Funções Especiais
Derivada Fracionária

Resumo
Neste artigo, apresentamos uma solução para uma integral gaussiana es-
pecı́fica. Introduzindo um parâmetro que depende de um ı́ndice n, encon-
tramos uma solução geral inspirada na série Taylor de uma função sim-
ples. Demonstramos que esse parâmetro representa os coeficientes da
expansão dessa função, um resultado muito interessante e novo. Também
introduzimos alguns teoremas que são provados por indução matemática.
Como teste para a solução apresentada aqui, investigamos uma versão
não extensiva para a densidade do número de partı́culas na estrutura de
Tsallis, o que nos permitiu avaliar a funcionalidade do método. Soluções
para uma determinada classe das funções gama e fatorial também são
derivadas. Além disso, apresentamos uma aplicação simples em cálculo
fracionário. Concluindo, acreditamos na relevância deste trabalho, pois ap-
resenta uma solução para a integral gaussiana de uma perspectiva inédita.

1 Introduction

Mathematics is present in the teaching and research of several other areas such as physics

and engineering. Mathematical knowledge is necessary to solve problems that can understand some

phenomena. One of the areas of application is the theoretical physics that has been developed and
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following the advance of research in mathematics, especially in the fields of geometry and analysis.

In this sense, we can speak of mathematical physics as an area of physical interest that involves

mathematical knowledge. This area comprises contents such as tensors, mathematical analysis,

field theory, among others. As a highlight, we mention the Gaussian integral that also is known as

probability integral being the integral of the function exp(−x2) over the entire line (−∞,∞). Solutions

of this type of integral involve the so-called gamma functions introduced by Euler in the 18th century

and improved by Legendre, Gauss, and Weierstrass (DAVIS, 1959, GRONAU, 2003). The Gaussian

integral has a wide range of applications in several areas of knowledge. Indeed, when we do a slight

change of variables it is possible to compute the normalizing constant of the normal distribution in

probability and statistics (SPIEGEL; SCHILLER; SRINIVASAN, 2001, STAHL, 2006). In physics the

Gaussian integral appears frequently in quantum mechanics (GREINER, 1990), to find the probability

density of the ground state of the harmonic oscillator, in the path integral formulation (SAKURAI,

1985), to find the propagator of the harmonic oscillator and in statistical mechanics (GREINER, 1995,

PATHRIA, 1996, SALINAS, 2001), to find its partition function.

2 Theoretical reference

Consider the solution of the following Gaussian integral:

∫ +∞

−∞

e−αx2
dx =

√
π

α
, (1)

where α ∈R, α 6= 0. There are several methods to solve this type of integral, but the most well known

and widely used in textbooks is the double integral method (STURM, 1857). Other methods can

be found in Laplace (1820) and Stigler (1986). Conrad (2013) synthesized eleven ways for solving

the Gaussian integral, among them, one uses the method of Fourier transforms, Stirling’s formula,

contour integration, and differentiation under the integral sign. Let us now consider a more general

Gaussian integral like (SALINAS, 2001, HERNANDEZ, 2015, WEISSTEIN, 2020a)

∫ +∞

−∞

x2n e−αx2
dx =

(2n−1)!!
2n

√
π

α
2n+1

2
, (∀ n ∈ N) , (2)

or

∫ +∞

−∞

x2n e−αx2
dx =

Γ
(2n+1

2

)
α

2n+1
2

, (∀ n ∈ N) . (3)
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For reasons of simplicity, we are considering that the number zero is included in the set of

natural numbers. Here, m!! is the double factorial that is defined as follow (ARFKEN; WEBER, 2005):

m!! =


m · (m−2) . . .5 ·3 ·1 m > 0 odd

m · (m−2) . . .6 ·4 ·2 m > 0 even

1 m =−1, 0 ,

(4)

and Γ(x) is the gamma function given by

Γ(x) =
∫

∞

0
tx−1e−tdt . (5)

The gamma function has great relevance for the development of new functions that can be

applied directly to physics. Normally this function is present in problems of physics such as, for

example, in the normalization of Coulomb wave functions and the calculation of probabilities in sta-

tistical mechanics (ARFKEN; WEBER, 2005). Notice that formulas (2) and (3) admits a solution for

x2n+1 since x ranges from zero to infinity. However, we present only the solutions for x2n because the

solution which will be presented in this work requires it.

3 Methodology

Inspired by the ways to solve the Gaussian integral as presented by Conrad, this work aims

at presenting a solution for a specific Gaussian integral based on the Taylor Series of a simple func-

tion. This is relevant because it enables us to treat certain mathematical and physical problems

from a new perspective having the differential calculus as a tool. The proposed solution consists

of introducing a parameter that has the role of describing the evolution of the numerical sequence

of Gaussian integral. In other words, the coefficient that accompanies
√

π (for example with α = 1)

gives us this numerical sequence. Through an analysis of the expansion in a Taylor series of the

function f (x) = (1− x)−1/2, we will show that this parameter can be thought of as the coefficients

of this expansion. Having done this, we were able to introduce some Theorems that are proved by

mathematical induction. As a test for the method, we obtained a non-extensive version for the particle

number density via Tsallis statistics. Also, solutions for the gamma function of the form Γ(1/2± n),

and the factorial function of the type (1/2±n)! was acquired, where n ∈ N, are derived. Besides, we

present an application in fractional calculus using the definitions of fractional derivative according to

Riemann-Liouville and Caputo.
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4 Results and discussions

Consider the Gaussian integral as follows:

I2n =
∫ +∞

−∞

x2n e−αx2
dx , (∀ n ∈ N;α > 0) . (6)

Solving I2n by conventional methods, we achieved the following results: I0 =
√

π/α1/2, I2 =
√

π/2α3/2, I4 = 3
√

π/4α5/2, I6 = 15
√

π/8α7/2 and so on. We can generalize these results by introduc-

ing a parameter that depends on n. The solution proposed here is based on the following definition:

I2n ≡ γ2n

√
π

α
2n+1

2
, (7)

where γ2n is a parameter to be determined. Note that γ0 = 1, γ2 = 1/2, γ4 = 3/4, γ6 = 15/8 and so forth.

The objective of this research is to find an expression for sequence, but it becomes evident when we

perform the expansion of the function f (x) = (1− x)−1/2 in a Taylor series around x = 0, as below:

f (x) =
∞

∑
n=0

dn(1− x)−1/2

dxn

∣∣∣∣∣
x=0

xn

n!
. (8)

Analyzing the first coefficients of the expansion above, the following results were achieved:

f (0) = 1, f ′(0) = 1/2, f ′′(0) = 3/4, f ′′′(0) = 15/8, f ′′′′(0) = 105/16 and so on. A meaningful remark is

that the coefficients of the expansion, that is f n(0), generate identical numbers which were generated

by the by the evolution of the parameter γ2n, as seen previously. Thus, it is reasonable to establish

the following definition:

Definition 1. For n ∈ N, γ2n can be defined as

γ2n ≡
dn(1− x)−1/2

dxn

∣∣∣∣∣
x=0

. (9)

In the next Proposition we prove a formula that can be used to calculate the derivative of any

order for the function f (x) = (1− x)−1/2, that appears in the Definition 1.

Proposition 1. The following statement is valid for all n ∈ N.

dn(1− x)−1/2

dxn =

[
n−1

∏
k=0

(
1
2
+ k
)]

.(1− x)−
1
2−n.

Proof. The demonstration will be done by induction over n. For n = 1, we have, by the chain rule that:

d(1− x)−1/2

dx
=−1

2
.(1− x)−

1
2−1.(−1) =

1
2
.(1− x)−

1
2−1.
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Now, suppose that for any natural number n < s+1 ∈ N we have

dn(1− x)−1/2

dxn =

[
n−1

∏
k=0

(
1
2
+ k
)]

.(1− x)−
1
2−n.

We will now show that the equation above is also valid for n = s+ 1. Indeed, deriving ds(1−x)−1/2

dxs we

obtain:

ds+1(1− x)−1/2

dxs+1 =
d
{[

∏
s−1
k=0

(1
2 + k

)]
.(1− x)−

1
2−s
}

dx

=

[
s−1

∏
k=0

(
1
2
+ k
)]

.

(
1
2
+ s
)
.(1− x)−

1
2−s−1

=

[
s

∏
k=0

(
1
2
+ k
)]

.(1− x)−
1
2−(s+1).

This ends this proof.

Now, we will use Proposition 1 to demonstrate the following Lemma:

Lemma 1. If γ2n is the function of Definition 1, then for all n ∈ N we have

γ2n =
n−1

∏
k=0

(
1
2
+ k
)

. (10)

Proof. Straightforward from Definition 1 and Proposition 1.

Definition 2. From (2) we can write

γ̄2n ≡
(2n−1)!!

2n , ∀ n ∈ N . (11)

Theorem 1. Let I2n given by (2), then

I2n = γ2n

√
π

α
2n+1

2
, ∀ n ∈ N , (12)

where γ2n is given by Definition 1.

To prove the Theorem 1, we will take into account the Definition 2. In other words, we just

need to show that γ2n = γ̄2n, for all n ∈ N.

Proof. The base case (n = 0) shows that γ0 = γ̄0, since from Definition 2, (−1)!! = 1. Suppose that

γ2n = γ̄2n is true for n = q with q ∈ N, then the inductive hypothesis is given by

γ2q = γ̄2q . (13)
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We now must show that γ2n = γ̄2n it is also true for n = q+1. So we have

γ2(q+1) = γ̄2(q+1) . (14)

By Lemma 1, with n = q+1 and k = i, the left-hand side of relation (14) becomes

γ2(q+1) =
q

∏
i=0

(
1
2
+ i
)

,

=
1
2

(
1
2
+1
)
· · ·
(

1
2
+(q−1)

)(
1
2
+q
)

,

= γ2q

(
1
2
+q
)

. (15)

Applying the inductive hypothesis, we get

γ2(q+1) = γ̄2q

(
1
2
+q
)

. (16)

Using the Definition 2 in (16), we obtain

γ2(q+1) =
(2q−1)!!

2q

(
1
2
+q
)

,

=
1

2q+1 [1 ·3 ·5 · · ·(2q−1) · (2q+1)] ,

= γ̄2(q+1) . (17)

This completes the proof.

An immediate consequence of the Theorem 1 is that we can establish a relationship between

the double factorial and the parameter γ2n, as below:

(2n−1)!! = 2n dn(1− x)−1/2

dxn

∣∣∣∣∣
x=0

, ∀ n ∈ N . (18)

For example, when n = 1, we have 1!! = 1, since γ2 = 1/2. For n = 2, we have 3!! = 3, since

γ4 = 3/4 and so on.

Since there are other methods, this one seems to be more practical than some methods

found in the literature. For example, in (3), we need to solve a gamma function Γ(t) as the Definition

3 shows, whereas our solution just needs to derive a simple function. Besides, we demonstrated that

parameter γ2n represents the Taylor series coefficients of the function f (x) = (1− x)−1/2. This means

that the evolution of Gaussian integral of a kind I2n has a strong relationship to the expansion terms of

f (x), a newsworthy result. One aspect that makes this solution accessible is the fact that, for example,
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in physical problems, n is not usually very large, which facilitates its application. Hereafter, we briefly

present an application in physics, specifically in the determination of the particle number density in

the Tsallis framework. Moreover, we present solutions for the gamma and factorial functions (special

functions) in terms of parameter γ2n, and we also show a simple application in fractional calculus.

4.1 Particle number density in Tsallis framework

We chose to evaluate the particle number density in the Tsallis framework because an ideal

scenario emerges in which it is possible to notice the functionality of our solution. In 1988, Con-

stantino Tsallis proposed a possible generalization of the Boltzmann-Gibbs (BG) entropy (TSALLIS,

1988). The proposed new entropy is expressed by

Sq =
kB

q−1

(
1−

Ω

∑
i=1

pq
i

)
, (19)

where kB is the Boltzmann constant, pi is the probability of the system to be found in the microstate

i and q is the parameter that characterizes the degree of nonextensivity of the system. The classical

entropy is recovered in the limit q→ 1. In Tsallis’ statistics, the particle number of species i per volume

can be written as follows:

nq
i =

gi

(2π})3

∫ +∞

−∞

d3 pN q
i , (20)

where N q
i is the generalized occupation number, gi is the degeneracy of species i and } is the Planck

reduced constant. The generalized occupation number for fermions in Tsallis framework is given by

(SHEN; ZHANG; WANG, 2017)

N q
i =

1

eβ (Ei−µi)
2−q +1

, (21)

where ex
2−q ≡ [1+(q−1)x]1/(q−1). Further, β = 1/kBT , µi and Ei are the chemical potential and particle

energy of species i, respectively.

Expanding (21) up to the first order of (q−1), we obtain (PESSAH, 2001)

N q
i =

1
eβ (Ei−µi)+1

+
(q−1)

2
(β (Ei−µi))

2eβ (Ei−µi)(
eβ (Ei−µi)+1

)2 . (22)

Considering the case in which kBT < (Ei−µi), then eβ (Ei−µi)� 1. Thus, (22) becomes

N q
i = e−β (Ei−µi)+

(q−1)
2

(β (Ei−µi))
2e−β (Ei−µi) . (23)
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In this way, assuming the energy for non-relativistic particles as Ei = mic2 + p2/2mi and using

(23) in (20), the generalized particle number density takes the form

nq
i =

2πgi

(2π})3 eβ (µi−mic2)
∫ +∞

−∞

d p p2e−α p2

+
2πgi

(2π})3
(q−1)

2
β

2eβ (µi−mic2)(mic2−µi)
2
∫ +∞

−∞

d p p2e−α p2

+
2πgi

(2π})3
(q−1)

2
β

2×mi(mic2−µi)eβ (µi−mic2)
∫ +∞

−∞

d p p4e−α p2

+
gi

(2π})3
(q−1)

2
β

2eβ (µi−mic2) π

2m2
i

∫ +∞

−∞

d p p6e−α p2
, (24)

where α ≡ β/2mi and c is the speed of light in vacuum.

Note that in the above expression we have four Gaussian integrals of type I2n. It is at this point that we

will apply our solution. To solve these Gaussian integrals, we will use the Theorem 1. The results are:

∫ +∞

−∞

d p p2e−α p2
= γ2(2mikBT )3/2√π , (25)∫ +∞

−∞

d p p4e−α p2
= γ4(2mikBT )5/2√π , (26)∫ +∞

−∞

d p p6e−α p2
= γ6(2mikBT )7/2√π . (27)

We will use the Definition 1 to compute the coefficients γ2n, thus we obtain γ2 = 1/2, γ4 = 3/4 and

γ6 = 15/8. Finally, we can find the generalized particle number density. After a little algebra, we get (PESSAH,

2001)

nq
i = gi

(
mikBT
2π}2

)3/2

e
µi−mic

2

kBT

{
1+

(q−1)
2

[(
mic2−µi

kBT

)2

+ 3
(

mic2−µi

kBT

)
+

15
4

]}
.

Notice that the usual particle number density is recovered when q = 1.

We chose this application because it arises integrals in which the n index assumes three different

values that facilitated the evaluation. As mentioned before, the solution presented here is viable to apply in

mathematical and physical problems where the n index is small, since we would need to perform successive

derivatives to obtain the result. Even that n is large, it was demonstrated that the solution also works for all

n ∈ N.

4.2 Special functions

An immediate application of Theorem 1 is verified in the gamma and factorial functions. The definition

of the special functions we will consider from now on is presented below.

REMAT, Bento Gonçalves, RS, Brasil, v. 7, n. 2, p. e3001, 1 Jul. 2021.
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Definition 3. Let t ∈R, and t > 0, the gamma function is defined by (BOAS, 2006, RILEY; HOBSON; BENCE,

2006)

Γ(t) =
∫ +∞

0
xt−1 e−x dx . (28)

Using t = p+1, and integrating by parts, we obtain the following recurrence relation:

Γ(p+1) = pΓ(p) . (29)

Definition 4. For m >−1, the factorial function is defined by (BOAS, 2006, RILEY; HOBSON; BENCE, 2006)

m! =
∫ +∞

0
xm e−x dx . (30)

We begin with the gamma function given by Definition 3, setting t = n+1/2, that is

Γ

(
1
2
+n
)
=
∫ +∞

0
x

2n−1
2 e−x dx . (31)

Taking x = r2, we obtain

Γ

(
1
2
+n
)
= 2

∫ +∞

0
r2n e−r2

dr .

Using the fact that if f : R→ R is even and the integrals converge,∫ +∞

−∞

f (x)dx = 2
∫ +∞

0
f (x) dx ,

we can use the Theorem 1 (with α = 1), to get

Γ

(
1
2
+n
)
=

dn(1− x)−1/2

dxn

∣∣∣∣∣
x=0

√
π . (32)

Having presented (32), it is convenient to introduce a recurrence relation for the parameter γ2n.

Lemma 2. If γ2n is given by Definition 1, then

γ2(n+1) =
2n+1

2
γ2n . (33)

Proof. Using (32), and the succeeding term, given by

Γ

(
2n+1

2
+1
)
= γ2(n+1)

√
π , (34)

we can insert these expressions in (29), defining p = n+1/2. Therefore

γ2(n+1) =
2n+1

2
γ2n . (35)
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The Theorem 1 ensures us that the parameter γ2n is given by Definition 1. Based on this, it is straight-

forward to show that the following equality is valid:

∞

∑
n=0

γ2n
xn

n!
=

∞

∑
n=0

(−1)nxn
(
− 1

2
n

)
, (36)

where
(a

b

)
is the binomial coefficient. From the expression above, we can conclude that

γ2n = (−1)n
√

π(
− 1

2 −n
)
!
, (37)

which yields the following result:

Γ

(
1
2
−n
)
= (−1)n

(
dn(1− x)−1/2

dxn

∣∣∣∣∣
x=0

)−1√
π , (38)

where we use the identity m! = Γ(m+1). Therefore, the product of (32) and (38) yields

Γ

(
1
2
+n
)

Γ

(
1
2
−n
)
= (−1)n

π . (39)

We now apply Theorem 1 to the factorial function given by Definition 4, putting m = n+1/2. Then we

have (
1
2
+n
)

! =
∫ +∞

0
x

2n+1
2 e−x dx . (40)

Replacing x = r2 and using Theorem 1 together with Lemma 2, we find(
1
2
+n
)

! =
(

1
2
+n
)

dn(1− x)−1/2

dxn

∣∣∣∣∣
x=0

√
π . (41)

Also, (
1
2
−n
)

! = (−1)n
(

1
2
−n
)(

dn(1− x)−1/2

dxn

∣∣∣∣∣
x=0

)−1√
π . (42)

Hence, we have the following product:(
1
2
+n
)

!
(

1
2
−n
)

! = (−1)n
(

1
4
−n2

)
π . (43)

4.3 Fractional derivative

Here we intend to present an interesting result that may be useful to fractional calculus. Initially let us

consider the following definitions:

Definition 5. Let Re(c)> Re(b)> 0, the hypergeometric function is defined by (WEISSTEIN, 2020b)

2F1 (a,b;c;z) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0
τ

b−1(1− τ)c−b−1(1− zτ)−adτ , (44)

where Re(x) is real part of x.
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Definition 6. The fractional derivative according to Riemann-Liouville is defined by (OLIVEIRA; MACHADO,

2014)

Dα f (t) =
1

Γ(m−α)

dm

dtm

∫ t

0

f (τ)
(t− τ)α−m+1 dτ , (45)

where α is a complex number such that Re(α)> 0 and m−1 < Re(α)≤ m with m ∈ N.

Definition 7. The fractional derivative according to Caputo is given by (OLIVEIRA; MACHADO, 2014)

Dα f (t) =
1

Γ(m−α)

∫ t

0
(t− τ)m−α−1 dm

dτm f (τ)dτ , (46)

being Re(α)> 0 such that m−1 < Re(α)≤ m with m ∈ N.

By using f (t) = tθ with θ >−1 in Definition 6, we obtain

Dα tθ =
Γ(θ +1)

Γ(θ −α +1)
tθ−α . (47)

For the case where α = θ , we have
dα tα

dtα
= α! . (48)

Let us now show that the result above can be represented by the k-th derivative of a simple function

applied to a point.

Lemma 3. Let k ∈ N, then
dk(1− x)−1

dxk

∣∣∣∣∣
x=0

= k! . (49)

Proof. In fact,

dk(1− x)−1

dxk = Γ(k+1)
∞

∑
n=k

(
n
k

)
xn−k ,

=
k!

(1− x)k+1 , (50)

hence, at x = 0, we obtain
dk(1− x)−1

dxk

∣∣∣∣∣
x=0

= k! . (51)

Suppose that k can takes the form k = n+1/2, the Lemma 3 may be written as follow:

d
2n+1

2 (1− x)−1

dx
2n+1

2

∣∣∣∣∣
x=0

=

(
1
2
+n
)

! . (52)

Let us now analyze the left-hand side of the equation above. To accomplish this, we will use the

Definitions 6 and 7 to evaluate the fractional derivatives. Thus, using the Definition 6 with α = n+1/2, we find

the following result:

D
2n+1

2 (1− x)−1 =
x−n− 1

2

Γ
( 1

2 −n
) 2F1

(
1,1;m−n+

1
2

;x
)

, (53)
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where 2F1 (a,b;c;z) is the hypergeometric function given by the Definition 5. This result applied to the point

x = 0 diverges.

Now using the Definition 7 with α = n+1/2 on the left-hand side of (52), we obtain

D
2n+1

2 (1− x)−1 =
Γ(m+1)

Γ
(
m−n+ 1

2

)xm−n− 1
2 2F1

(
m+1,1;m−n+

1
2

;x
)

. (54)

Note that at the point x = 0, the result above goes to zero, since m > n+ 1/2. We show that both

Riemann-Liouville and Caputo’s definitions are flimsy when computed the fractional derivatives of the function

f (x) = (1− x)−1 at the point x = 0. On the other hand, this problem can be avoided considering the result

presented in (41). Hence, we may write

D
2n+1

2 (1− x)−1∣∣
x=0 =

(
1
2
+n
)

dn(1− x)−1/2

dxn

∣∣∣∣∣
x=0

√
π . (55)

5 Final considerations

It was presented a solution for solving the Gaussian integral inspired by expansion in Taylor series of

a simple function, namely f (x) = (1− x)−1/2. Introducing a parameter with a n index dependence, we found a

general solution able to be used in any situation, since the Gaussian integral is of type I2n. We demonstrated

that the parameter γ2n represents the Taylor series coefficients of the function f (x), a newsworthy result. The

reliability of the solution is guaranteed through the proof of some Theorems, which were proved by mathemat-

ical induction. To check the functionality of the solution, we obtained the particle number density in the Tsallis

framework. Besides, we presented solutions for the gamma function of the form Γ(1/2± n), and the factorial

function of a kind (1/2±n)!, in terms of the parameter γ2n. We also shown that our solution is useful for frac-

tional calculus, for example, the definitions of fractional derivative according to Riemann-Liouville and Caputo

are flimsy when evaluated the fractional derivatives of the function f (x) = (1− x)−1 at the point x = 0, whereas

according to our solution, we found the result on the functionality and efficiency of that solution, as (55) shows.

In conclusion, we believe in the relevance of the present work because it reveals an unprecedented solution

for the Gaussian integral: one of the most famous integrals of the exact sciences.

Acknowledgements

The authors are very grateful to R. C. Duarte, N. S. Almeida, T. Dumelow and A. M. Filho by the helpful

discussions and the Brazilian agency CAPES for financial support.

REMAT, Bento Gonçalves, RS, Brasil, v. 7, n. 2, p. e3001, 1 Jul. 2021.
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