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Abstract
This work applies different numerical methods involved in the solution of
a nonlinear clamped beam problem. The methodology used in the dis-
cretization of the dynamic problem is based on the Finite Element Method
(FEM), followed by mode superposition, where a localized nonlinearity is
applied at the free end of the beam. The solution of the nonlinear prob-
lem is performed by five different integration methods. The solution code
is implemented in FORTRAN language, validated with ANSYS and the dy-
namic response and the graphs are obtained with the help of MATLAB R©
software. The work shows the convergence of the implemented methods
with various validation problems.
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Palavras-chave
Métodos Numéricos
Método dos Elementos Finitos
Superposição Modal

Resumo
Este trabalho aplica diferentes métodos numéricos envolvidos na solução
de um problema de viga não linear engastada em uma de suas extrem-
idades. A metodologia usada na discretização do problema dinâmico
é baseada no Método dos Elementos Finitos (MEF), seguido pela
superposição de modo, onde uma não linearidade localizada é aplicada
na extremidade livre da viga. A solução do problema não linear é realizada
por cinco diferentes métodos de integração. O código da solução é imple-
mentado na linguagem FORTRAN, validado com o ANSYS e a resposta
dinâmica e os gráficos são obtidos com a ajuda do software MATLAB R©.
O trabalho mostra a convergência dos métodos implementados para os
vários problemas de validação.

1 Introduction

The analysis of dynamical systems in the time domain can be solved using different numerical

solution methodologies of the differential equation involved in the problem. This work presents a

validation and application of these different methods when submitted to a nonlinear dynamic problem.

The nonlinear case is much more complex than the linear case, however it is widely applicable in

numerous systems. As says Strogatz (2018): nonlinear systems are impossible to solve analytically

and that is why numerical methods are needed to solve these kind of problems.

Systems of nonlinear equations are presented in several problems and solving them is one

of the main purposes of applied mathematics. Then, considering the nonlinear problem and the

associated solution method adopted, it is necessary to analyse different parameters, such as com-

putational efficiency, methods with a rapid convergence to the desired solution, errors and initial

conditions effect in the response. In recent years, large scale nonlinear equations have been attract-

ing more attention from researchers. Yuan (2011) shows recent developments in numerical meth-

ods for the solution of nonlinear equations, particularly on Newton’s method, quasi-Newton method,

Gauss-Newton method, Levenberg-Marquardt method and trust region method. It also shows some

theoretical results about local convergence. Realizing the importance of a more in-depth study of nu-

merical methods for systems of nonlinear equations, Remani (2013) presented an extremely detailed

study with examples of implementation in MATLAB, comparing methods such as centered differences

and Newton method for systems with a high number of equations. This continuous development of

nonlinearities in many areas and examples of applications with further study can be found in Strogatz

(2018).
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The analysis of numerical methods in the solution of problems of nonlinear structures was

already present in some works decades ago. It is noted Regina Célia (1983), which demonstrates

the main numerical characteristics of the algorithms of direct integration in nonlinear dynamics of

structures using the Finite Element Method. Additionally, this work includes the analysis of the New-

mark Method and Centered Differences, treating nonlinear parts as pseudo-forces and verifying the

dynamic balance together with the stability of the algorithms, based on the concept of energy conser-

vation. It is evident the evolution in the solution of this type of nonlinear problem with the advancement

of computing in this century. With the necessity to evaluate the performance of the algorithms, Chang

(2004) studied the performance of the Newmark method in nonlinear problems. This also empha-

sizes the need to study the stability of these numerical integration methods in nonlinear structures

problems. In Rezalee-Pajand and Karimi-Rad (2017), a new accurate predictor-corrector time inte-

gration method is proposed, which is shown superior to the centered differences method, and has

second-order accuracy for structures with and without damping. Moreover, it is observed the im-

portance of studying these methods in nonlinear beam problems, which are very common and can

be the basic model of several complex systems. Looking at what was done in Tsai (2005), a study

which compares numerical solutions for nonlinear beam problems (solutions for nonlinear 4-th order

ordinary differential equations with nonlinear boundary conditions), and several methods to finally

classify the best ones. In Khan and Kaneez (2017) also a new numerical method for nonlinear vi-

brational analysis of Euler-Bernoulli beams is presented, showing the importance of studying this

subject.

This work presents the whole methodology involved and necessary in the problem for the

analysis of these different numerical methods.

Section 2 presents the methodology of this work. Section 3 shows the development of all

physical and numerical models used in this work. Starting at 3.1 for the beam discretization and

modal analysis compared to the ANSYS software. Section 3.2 presents the numerical methods

implemented to solve the system of differential equations. Then, at Section 3.3, the solution of

these methods for a linear problem is presented in comparison with the commercial Finite Element

software. Finally, Section 3.4 shows the solution for two nonlinear systems using the physical model

and the numerical methods implemented. All problems in these sections have the same physical

beam model.
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2 Methodology

The developed model in this work could represent a bridge, a wing of an aircraft or even the

suspension of a vehicle (changing only the boundary conditions applied). Firstly, the linear case is

developed and validated. Then, based on this model, a localized nonlinearity is introduced in order to

show the results of the implemented methods. The numerical verification are performed varying the

temporal and spatial discretization, using Manufactured Solutions, such results not shown here. All

the methods and functions used for solving the problems were implemented in FORTRAN language

(https://fortran-lang.org). The validation of the physical and numerical model was based on

comparisons with ANSYS R© software using a beam element type.

3 The nonlinear problem for time analysis

The nonlinear problems presented here are based on a cantilever beam with a force imposed

at the free, which turns the modelling into a nonlinear system. Two problems will be analysed.

The analyzed beam is made of steel (having the Young’s Module E = 2.068.1011 N
m2 , and

the Poisson’s dimensionless coefficient ν = 0.3) with a constant cross section of 0.01m× 0.01m and

length of 1m.

The mathematical physical modelling of the dynamical system is given by the following second-

order ordinary differential Eq. (1):

[M ] [ẍ(t)] + [C] [ẋ(t)] + [K] [x(t)] = f(t) (1)

where [M ] represents the mass matrix of the system, [K] the stiffness matrix, [C] the damping matrix,

x(t) the displacements vector and f(t) the external force applied (which can be linear or not). ẋ(t)

represents derivative of the response with respect to the time. The Euler-Bernouli beam, with two

nodes per elements and two degrees of freedom per node, one of translation and one of rotation,

was considered. The Finite Element Method (FEM) composed by 1D beam formulation is used to

represent the ordinary differential equation of the dynamical system. The ANSYS R©, as a commercial

and validated Finite Element Software, is used as baseline to validate the implemented FEM and

numerical integrations procedures.
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3.1 Beam discretization and modal analysis

Firstly, the mass and stiffness matrices of a cantilever beam were obtained by finite element

modelling (HUTTON, 2004) and validated. For this, a modal analysis of the physical model was

performed considering the beam divided in 20 elements. This analysis consists on the determination

of the eigenvalues of the system dynamical matrix ([D] = [M ]−1[K]) and, the calculation theirs the

natural frequencies. The results of this process are compared with those obtained by the ANSYS R©

Software and presented in Table 1.

Table 1 – Comparison of natural frequencies obtained with the model.
Physical Model (Hz) ANSYS R© (Hz) Difference %

8.305 8.167 1.690
51.972 51.230 1.448

145.638 143.730 1.327
286.082 282.570 1.243
474.777 469.170 1.196
712.670 704.78 1.119

Source: Authors’ elaboration (2020).

It is possible to observe that the differences presented in the table are bellow 1.7%, which

indicates that the physical model of the problem is representative. The slightly different results must

be due to the elementary matrices used in each simulation and even the numerical method used in

the inversion of the mass matrix.

3.2 Numerical mathematical methods for solve the differential equation of motion

With the mass and stiffness matrices, it is then possible to determine the numerical solution

of the differential Eq. (1) by different numerical methodologies (BATHE, 2014). However, before

the differential equation is solved, a modal reduction is performed (BORINO; MUSCOLINO, 1986)

using the two modes with lower natural frequencies generated by the FEM code. Avoiding higher

frequency mode shapes, a greater time step can be adopted, thus improving the stability of the

numerical methods implemented.

The numerical methods chosen to solve the differential Eq. (1) are the direct integration

methods. Consequently, five different types were implemented: linear Newmark Method, Nonlinear

Newmark Method, Houbolt Method, Bathe Method and Central Difference Method (BATHE, 2014).
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According to Eq. (1), it will be presented each equation used for each method in its imple-

mentation as well as described in (BATHE, 2014).

1. The Central Difference Method. Known as an explicit method because it uses the time equi-

librium conditions t. Starting the initial conditions, selecting the temporal step and applying

Eq. (2), there is still a solution need for a linear system.(
1

∆t2
+

1

2∆t
C

)
xt+∆t = f t −

(
K − 2

∆t2
M

)
xt −

(
1

∆t2
M − 1

2∆t
C

)
xt−∆t (2)

2. The Houbolt Method. Already known as the implicit method, the implementation procedure

resembles the Central Difference Method, but considering Eq. (3)(
2

∆t2
M +

11

6∆t
C +K

)
xt+∆t = f t+∆t +

(
5

∆t2
M +

3

∆t
C

)
xt

−
(

4

∆t2
M +

3
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C
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(
1
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1

3∆t
C

)
xt−2∆t (3)

3. The Linear Newmark Method. It is also an implicit method, although it respects Eq. (4)(
4

∆t2
M +

2

∆t
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)
xt+∆t = f t+∆t −M

(
4

∆t2
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4
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+ C

(
2
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(4)

4. The Bathe Method. It uses two sub-steps for each time integration. In the first sub-step the

Newmark Method is used and in the second sub-step, the 3-point Euler backward method

is used. The initial conditions must be chosen as in the previous methods and it is also an

implicit method of integration (Eq. (5),(6),(7),(8)).(
16
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4
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2 = f̂ t+
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(
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8
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)
+ C

(
4
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9
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3
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)
xt+∆t = f̂ t+∆t (7)

f̂ t+∆t = f t+∆t +M

(
12
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∆t2
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4
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ẋt+

∆t
2 − 1

∆t
ẋt
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xt
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(8)

5. The Nonlinear Newmark Method. The difference between this and the Linear Newmark

Method consists in the process of reducing the residue at each step-in time using the Newton

method, being the residue (VIEIRA, 2004) described by Eq. (9).

Rt = f t −Mẍt − Cẋt −Kxt (9)
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3.3 Linear problem validation

The problem considered consists of a cantilever beam in which a constant external force

f = 100N is only applied at time t = 0.

In order to compare the results presented by the methods implemented with those of the

ANSYS R© software, the ANSYS Mechanical APDL was used considering the first two structural

modes (as well as the implemented model). The simulation time was 1s and the same time step

was used for all methods (10−4s ). The choice of this time step is the product of several numerical

experiments, and for a time step less than or equal to 10−4 all methods guarantee the same solution

in this case. In Fig. 1, the results obtained by the five numerical methods and the ANSYS R© result

are shown.

Figure 1 – Linear problem validation.

Source: Authors’ elaboration (2020).

The results from Fig. 1, shows a proximity of the answers obtained by the implemented

methods and the one obtained by the ANSYS R© software, which validates the mathematical and

numerical methodology (for the linear dynamic system).
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3.4 The nonlinear problem results

After the computational verification of the implemented code, two nonlinear problems are

simulated.

3.4.1 Cantilever beam with a ball and a spring-damping system

The nonlinear dynamical system modelled and shown in Fig. 2 consists of a cantilever beam

with a ball on the top of it, moving at constant speed, and a spring-damping system at a distance

X0 = 0.001m from the end of the beam. In order to make the physical modelling of the system

even more realistic, a damping model was implemented. This section uses the proportional damping

model (ADHIKARI, 2000). It was considered only the first mode shape for modal reduction, in order

to improve the graphic visualization of the solution.

Figure 2 – Geometric setting of the cantilever beam with a moving ball and and a spring-damping system.

Source: Authors’ elaboration (2020).

The nonlinear problem can have its nonlinearity modelled through f = f1 + f2 given by:

f1 = fk + fc =


−k(xk(t) −X0)2 − cẋk(t), Se xk ≥ X0

k(xk(t) −X0)2 − cẋk(t), Se xk ≤ −X0

(10)

where fk(t) and fc(t) are the force due to a nonlinear spring and a linear damping respectively

(k = 1000N/m, c = 1N/m/s), implemented at a distance X0 = 0.001m from the beam as shown in

Fig. 2 and applied only in the last node. Whereas f2 represents the force due to the displacement

of the mass (10kg) at constant speed. The movement of the ball (mass) was set to be continuously

along the length of the beam and the loads transferred to the nodes at the same time. The equation

of the ball movement is Eq. (11),

S(t) = S0 + vt (11)

S0 being the initial position of the ball and v its constant speed, in this case it was considered S0 =

0.1m e v = 0.5m/s.

REMAT, Bento Gonçalves, RS, Brasil, v. 7, n. 1, p. e3002, 8 jan. 2021.
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The simulation lasted 10s and for each method implemented a different time step was used

in order to guarantee convergence (Tab. 2). Fig. 3 shows the temporal response of the problem

according to the displacement of the last node.

Table 2 – Step in time, ∆t, used for each method in the problem of the cantilever beam with a moving
ball and and a spring-damping system.

∆t s

Nonlinear Newmark 10−2

Houbolt 10−6

Central Difference 10−4

Bathe 10−5

Linear Newmark 10−2

Source: Authors’ elaboration (2020).

Figure 3 – Dynamics of the free end of a cantilever beam with a moving ball and a spring-damping
system (Overlapping results, hence only one color).

Source: Authors’ elaboration (2020).

From Fig. 3 it is possible to verify that approximately at 1.4s the ball reaches the end of the

beam and falls, and, at this moment, the system dampens until it stops. It can also be verified that

the beam touches the spring-damper system since the value of X0 has exceeded at the bottom and

at the top.
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3.4.2 Cantilever beam with eletromagnetic actuators

This problem consists of a cantilever beam with electromagnetic actuators located vertically

at a predetermined (symmetrical) distance from its free end as shown in Fig. 4.

Figure 4 – Geometric setting of the cantilever beam with electromagnetic actuators.

Source: Authors’ elaboration (2020).

In this case, the structural damping effects have been suppressed in order to not dissipate

energy from the system, thus improving the visualization of nonlinearities. It was considered only the

first mode shape for modal reduction.

The beam characteristics are the same as in Section 3.4.1, where e = 0.1m is the air gap

value. In this problem, structural damping was still considered null. Electromagnetic actuators are

modelled as nonlinear forces given by f in Eq. (1) and defined by:

f = Fem + Fa (12)

where Fem represents the electromagnetic force induced by the actuators and Fa the external force

conditions applied to the system in order to further disturb its stability, consequently making nonlinear

effects more noticeable. The expression for Fem is given by:

Fem =
N2 µ0 a g l

2

2
(

(e± x(t)) + b+h+d−2a
µr

)2 (13)

in which coefficients a, b, d, g and h represents geometric characteristics of the actuators (See Fig.

5); µ0 represents the magnetic permeability of vacuum (4π 10−7 H/m); N the number of turns per

actuator; I the electric current passing through the actuators (in amps), µr is the relative magnetic

permeability (dimensionless parameter, assumed constant in this case at the value of 740, for low

flow density) (BELHAQ et al., 2011). The values used are in Tab. 3.

REMAT, Bento Gonçalves, RS, Brasil, v. 7, n. 1, p. e3002, 8 jan. 2021.



Application of Direct Integration Methods in the solution of a nonlinear beam problem 11

Table 3 – Parameters used for the geometric characteristics of the actuators.

a 10−3m

b 4 × 10−2m

d 10−3m

g 2.1 × 10−3m

h 3 × 10−3m

N 180

I 0.2A
Source: Authors’ elaboration (2020).

Figure 5 – Characteristics of the electromagnetic actuators.

Source: BELHAQ et al., 2011.

The difference between this problem and the previous one is in the beam dynamics, whereas

in the first problem after a certain time the position of the free end converges to an equilibrium

position; the second problem oscillates between two well-defined equilibrium positions.

Two different types of conditions were applied to verify the behaviour of the system and the

implemented methods. In the first one, Fa was considered 0 and an ideal impulse was applied to

the system at the value of 1.0Ns (which is mathematically equivalent to an initial velocity condition).

Aiming to simplify the problem, only the results obtained on the last node of the mesh and their

degree of freedom of translation were presented. Fig. 6 shows the transverse displacement relative

to the time of this analysis position and Fig. 7 shows the system’s phase diagram.
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Figure 6 – Time displacements for ideal impulse.

Source: Authors’ elaboration (2020).

It is possible to observe that all methods oscillate around two equilibrium positions, starting

with the positive side of the displacements (right area of the graphs), which is physically correct, since

the applied impulse was in this direction.

In the second condition, Fa = 10 sin(4.2, π, t) was considered and an ideal pulse was once

again applied to the system at the value of 0.1Ns. Fig. 8 shows the transverse displacement accord-

ing to this analysis and Fig. 9 shows the system’s phase diagram.
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Figure 7 – Phase diagram for ideal impulse.

Source: Authors’ elaboration (2020).

Figure 8 – Time displacements for ideal impulse and periodic force.

Source: Authors’ elaboration (2020).
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Figure 9 – Phase diagram for ideal impulse and periodic force.

Source: Authors’ elaboration (2020).

Comparing Fig. 6 and Fig. 8 of the transverse displacement of the end of the beam, we see

that the periodic force Fa influences the dynamics of this displacement, where the change from one

equilibrium position to another is not linear.

The methods were executed for different time steps, ∆t, and the results showed that all of

the methods have the same qualitative behaviour: they oscillate around the two equilibrium positions

and the Central Difference Method presents this behaviour at ∆t = 10−3s , while others need smaller

∆t. After ∆t = 10−5s, all the methods report the expected behaviour.

4 Conclusion

The linear dynamic model was implemented and the procedure validated with the help of

ANSYS R© software. It is possible to observe that the results of the methods converge to the same

solution, therefore validating the implementation of the numerical methods.

After the validation of the linear problem, the methodology was used for two nonlinear prob-

lems. In the first problem, a cantilever beam with a ball and a spring-damping system was observed

and the results obtained by the numerical methods were physically coherent, in which was necessary

to use different time steps for each method. Whereas on the second problem, a cantilever beam with

electromagnetic actuators, with a higher degree of nonlinearity than the previous one, was used and

REMAT, Bento Gonçalves, RS, Brasil, v. 7, n. 1, p. e3002, 8 jan. 2021.
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the numerical experiments showed that the displacement convergence was the same for all methods.

However, the temporal convergence of these methods were different for both the impulsive condition

and the impulsive condition plus the periodic condition. Therefore, it was concluded, with this last

analysis, that the method with the best temporal convergence for this problem was the Central Differ-

ence Method, although not being the fastest method.

Finally, it is believed that a careful computational analysis of the numerical methods used to

solve the given problem is necessary, because, depending on it, the solution may need small time

steps, physically and numerically wise.
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